SOC Generic Decoder System

API Specification

Revision: 1.3 2017.4.26

© 2017 SOC Technologies Inc.

SOC is disclosing this user manual (the "Documentation") to you solely for use in the development of designs to operate with SOC hardware devices. You may not reproduce, distribute, republish, download, display, post, or transmit the Documentation in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without the prior written consent of SOC. SOC expressly disclaims any liability arising out of your use of the Documentation. SOC reserves the right, at its sole discretion, to change the Documentation without notice at any time. SOC assumes no obligation

to correct any errors contained in the Documentation, or to advise you of any corrections or updates. SOC expressly disclaims any liability in connection with technical support or assistance that may be provided to you in connection with the Information.

THE DOCUMENTATION IS DISCLOSED TO YOU "AS-IS" WITH NO WARRANTY OF ANY KIND. SOC MAKES NO OTHER WARRANTIES, WHETHER EXPRESSED, IMPLIED, OR STATUTORY, REGARDING THE DOCUMENTATION, INCLUDING ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT OF THIRD-PARTY RIGHTS. IN NO EVENT WILL SOC BE LIABLE FOR ANY CONSEQUENTIAL, INDIRECT, EXEMPLARY, SPECIAL, OR INCIDENTAL DAMAGES, INCLUDING ANY LOSS OF DATA OR LOST PROFITS, ARISING FROM YOUR USE OF THE DOCUMENTATION.

© 2008-2017 SOC, Inc. All rights reserved.

SOC, the SOC logo, the Brand Window, and other designated brands included herein are trademarks of SOC, Inc.

Revision History

The following table shows the revision history for this document.

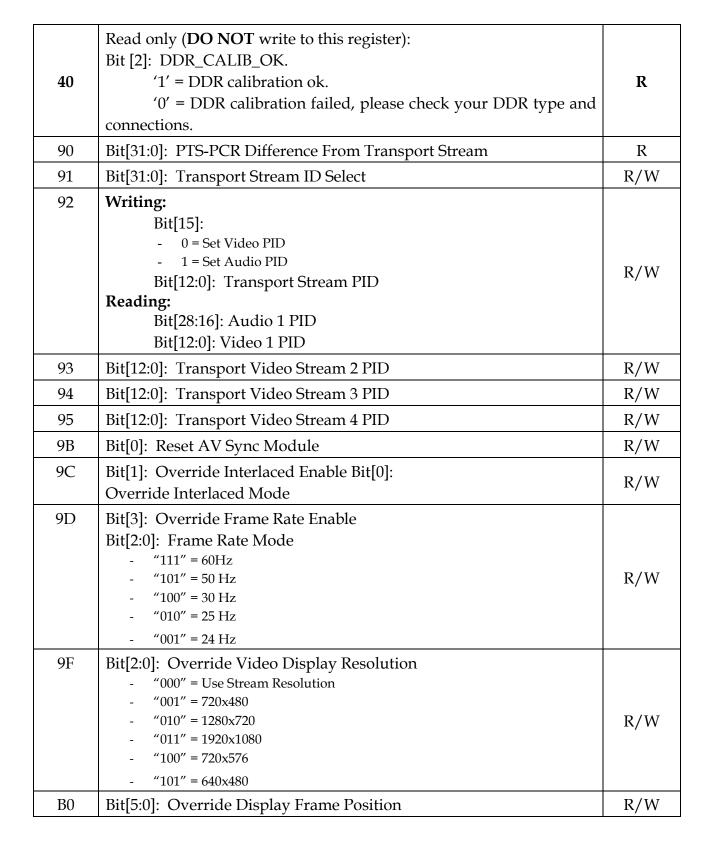
Date	Comment	Revision	Author
	Old versions	1.0	
2016.10.24	Added register BF to the API manual.	1.1	Blake
2016.12.20	Audio PID selectable (0x92)	1.2	Chad
2017.04.26	Add DDR calib register(0x40)	1.3	Blake

Introduction

The API interface has 256 register (16 bit for writing and 32 bits for reading). Each register has an address to allow user-access. The registers accept command code for controlling the operation of the features within the FPGA. The registers may be read to acquire status and debugging information.

Some registers are allocated for user configurations and the rest are reserved for system functions such as debugging. The following table(s) specifies the address, definition, and access right (read/write) for the user-accessible registers. Note: registers of any API_TYPE that are NOT in the table are not designed for user access. If such a register is written to, the decoder may stop running. To recover, the core must be re-downloaded into the FPGA.

Control the API inside the FPGA


If it is necessary to control the API via the modules inside the FPGA, the ports of the API are available. Details, including the clock frequency, are provided in the corresponding integration manual.

Control the API outside the FPGA

If it is necessary to control the Decoder from outside the FPGA, the address, date, and R/W pins can be routed to the FPGA I/O pins. The desired FPGA I/O pins for the API may be selected or the SOC default pins may be used. An UART interface is available, upon request. The interface provides access to the API via uart_tx and uart_rx pins.

Table-1: General Core Registers

Addr	Information	Access
(HEX)	momation	Access

	- Only used when 0xB1=2	
B1	Bit[1:0]: Override Display Frame Mode - "00" = Normal A/V Sync - "01" = Display Last Decoded - "10" = Display Frame reference by register 0xB0 - "11" = Display current Decoding Frame	
B3	 Bit[12]: Enable Auto Low Delay mode. (May not be compatible with all TS stream). This function will auto adjust the video presentation time to the lowest possible. Bit[11]: Truncate active video range for compliance with TRS embedded video codes. Bit[10]: Allow expired frame to be display if newer than current displayed frame Bit[8]: Debug Overlay Enable 	R/W
B4	Bit[4]: TS MPEG2 Stream Detected Bit[3]: TS H264 Stream Detected	R
В5	Bit[15:12]: TS Rx Sync Error Counter (user clock) Bit[11:8]: TS Rx Sync Error Counter (TS clock) Bit[7:4]: TS Rx Byte Count (TS clock) Bit[3:0]: TS Rx Byte Count (user clock)	R
B6	Bit[31:16]: TS Buffer Overflow Count Bit[15:0]: TS Demux Overflow Count	R
B7	Bit[1]: Bypass PCR Sync (PCR counter will free run) Bit[0]: New Stream Sync	R/W
B8	 Bit[15:0]: PCR resync threshold. PCR will only resync if difference is greater than the threshold. This allows the system to tolerate variable jitter 	R/W

BF	Display timing threshold value (DTH): Bit [2:0]: DTH for progressive stream. The unit is a frame. Bit [10:8]: DTH for interlaced stream. The unit is the first field, typically the top field.		
	 *This register is to control latency for progressive and interlaced scenario, respectively. DTH =0: The frame is submitted to display only when the whole (100%) unit is received and decoded. This is the default and most safe value. DTH =1 to 7: The frame is submitted to display when DTH x12.5 % of the unit is received and decoded. 	R/W	
	***Important notes: Be careful to use this register with a low value. Due to the input stream is possibly not constant coming, the low value (for		
	<i>example</i> DTH =2 <i>for only</i> 25% <i>) could cause the display jitter or flashing. If this happen, the user should increase the</i> DTH.		
FC	Bit[31:0]: Decoder System Build Date	R	
FD	Bit[31:0]: Decoder System Time Stamp	R	
FE	Bit[11]: MPEG2 Core PresentBit[10]: H264 Core PresentBit[3]: PCM Buffer PresentBit[7]: DSP Interface Core PresentBit[5]: Video Output Core PresentBit[4]: Maximum 1080i OutputBit[3]: 50Hz minimum output frame rateBit[2]: Watermark PresentBit[1]: FPGA DNA Authentication presentBit[0]: FPGA EEPROM Authentication present	R	
FF	Bit[31:16]: Reset Count Bit[6]: Transport Stream Mode Bit[5]: Transport Stream Reset Bit[4]: Video Decoder Reset Bit[3]: Authentication Key OK Bit[2]: PTS Reset Enable* Bit[1]: Display Reset* Bit[0]: Decoder Reset*	R/W*	

Table-2: Frame Sync API registers description

Addr (HEX)	Information	Access
70	Bit[31:16]: Output Expired Frame Counter Bit[15:0]: Output Frame Counter	R
71	Bit[15:0]: Input Invalid Frame Counter	R
72	Bit[15:0]: Input Expired Frame Counter	R
73	Bit[15:0]: PCR Clock Resync Counter	R
74	Bit[15:0]: Frames Duplicated	R
75	Bit[15:0]: Frames Skipped	R
76	Bit[1]: Trick Mode Running Bit[0]: Override Sync*	R/W*
77	Bit[5:0]: Buffer Frame Count	R
78	Bit[31:24]: Top Field Count Bit[23:16]: Bottom Field Count Bit[15:0]: Frame Count	R
7D	Bit[31:0]: Current Presentation Time	R
7E	Bit[31:0]: Last Displayed Presentation Time	W

Table-3: DDR Fifo Registers

The DDR fifo is a miniumum 8MB buffer to handle any incoming bandwidth spikes the BRAM is not sufficient for. In most application the DDR fifo will remain empty or below 10%.

Addr (HEX)	Information	Access
30	Bit[31:0]: Build Date	R

31	Bit[14]: Reset	
	Bit[13]: Buffer Overflow	
	Bit[10]: Byte Read	
	Bit[9]: Output Buffer Empty	
	Bit[8]: Output Buffer Ready	R/W
	Bit[3]: Timer Enabled*	
	Bit[2]: Low Delay*	
	Bit[1]: Clear Buffer Overflow Register*	
	Bit[0]: API Reset*	
32	Bit[5:0]: Burst Size	D /147
	Bit[8]: Bypass DDR Fifo (DDR will not be used)	R/W
33	Bit[25:0]: DDR Start Address	R
34	Bit[25:0]: DDR End Address	R
35	Bit[7:0]: DDR Buffer Percent	R
36	Bit[7:0]: DDR Buffer Count (Number of Blocks in DDR)	R
37	Bit[15:0]: Input Count	R
38	Bit[15:0]: Read Count	R

